Scope of Variable

Scope of Variable

A scope in any programming is a region of the program where a defined variable
can have its existence and beyond that variable it cannot be accessed. There are
three places where variables can be declared in C programming language -

e Inside a function or a block which is called local variables.
e Qutside of all functions which is called global variables.
e In the definition of function parameters which are called formal parameters.

Local Variables

Variables that are declared inside a
function or block are called local
variables. They can be used only by
statements that are inside that function
or block of code. Local variables are not
known to functions outside their own.
The following example shows how local
variables are used. Here all the
variables a, b, and c are local to main()
function.

#include <stdio.h>
int main () {

/* local variable declaration
*/

int a, b;

int c¢;

/* actual initialization */
a 10;

b 20;

c a + b;

printf ("value of a = %d, b =
%d and ¢ = %d\n", a, b, c):

return O;

}

Global Variables

Global variables are defined outside a
function, usually on top of the program.
Global variables hold their values
throughout the lifetime of your program and
they can be accessed inside any of the
functions defined for the program.

A global variable can be accessed by any
function. That is, a global variable is
available for use throughout your entire
program after its declaration. The following
program show how global variables are
used in a program.

#include <stdio.h>

/* global variable declaration */
int g;

int main () {

/* local variable declaration */
int a, b;

/* actual initialization */

a = 10;
b = 20;
g =a + b;

printf ("value of a = %d, b = %d
and g = %d\n", a, b, g9);

return O;

}

Local and global variable priority

A program can have
same name for local
and global variables
but the value of local
variable inside a
function will take
preference. Here is
an example -

#include <stdio.h>

/* global variable declaration */
int g = 20;

int main () {

/* local variable declaration */
int g = 10;

printf ("value of g = %d\n", g);

return 0;

}

value of g = 160

#include <stdio.h>

Formal Parameters

/* global variable declaration */

inta = 20;
Formal parameters, are int main () {
treated as local variables /* local variable declaration in main function */
inta=10;
with-in a function and they o220
take precedence over g|0ba| printf ("value of a in main() = %d\n", a);
; i i c=sum(a, b);
Varlables' FO”OWIng IS an printf ("value of ¢ in main() = %d\n", c);
example - return O;
}
- . /* function to add two integers */
value of a in main() = 10 int sum(int a, int b) {
Value Of a in sum() = 10 printf ("value of a in sum() = %d\n", a);
- intf ("value of b in sum() = %d\n", b);
value of b in sum() = 20 print

. . t + b;
value of ¢ in main() = 30 o

Global Variable Initialization

After defining a local variable, the ESETEI e Initial Default Value
system or the compiler won't be

initializing any value to it. You i 0
have to initialize it by yourself. It is
considered good programming
practice to initialize variables
before using. Whereas in contrast,
global variables get initialized
automatically by the compiler as
and when defined. Here's how double 0
based on datatype; global

variables are defined. pointer NULL

char "\O'

float 0

Summary: Scope of variables

Position Type

Inside a function or a local variables
block.

Out of all functions. Global variables

In the function Formal parameters

parameters.

